Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Biol Psychiatry ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38521159

RESUMEN

BACKGROUND: Schizophrenia is a highly heritable disorder characterized by increased cortical thinning throughout the life span. Studies have reported a shared genetic basis between schizophrenia and cortical thickness. However, no genes whose expression is related to abnormal cortical thinning in schizophrenia have been identified. METHODS: We conducted linear mixed models to estimate the rates of accelerated cortical thinning across 68 regions from the Desikan-Killiany atlas in individuals with schizophrenia compared with healthy control participants from a large longitudinal sample (ncases = 169 and ncontrols = 298, ages 16-70 years). We studied the correlation between gene expression data from the Allen Human Brain Atlas and accelerated thinning estimates across cortical regions. Finally, we explored the functional and genetic underpinnings of the genes that contribute most to accelerated thinning. RESULTS: We found a global pattern of accelerated cortical thinning in individuals with schizophrenia compared with healthy control participants. Genes underexpressed in cortical regions that exhibit this accelerated thinning were downregulated in several psychiatric disorders and were enriched for both common and rare disrupting variation for schizophrenia and neurodevelopmental disorders. In contrast, none of these enrichments were observed for baseline cross-sectional cortical thickness differences. CONCLUSIONS: Our findings suggest that accelerated cortical thinning, rather than cortical thickness alone, serves as an informative phenotype for neurodevelopmental disruptions in schizophrenia. We highlight the genetic and transcriptomic correlates of this accelerated cortical thinning, emphasizing the need for future longitudinal studies to elucidate the role of genetic variation and the temporal-spatial dynamics of gene expression in brain development and aging in schizophrenia.

2.
Lancet Digit Health ; 6(3): e211-e221, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395541

RESUMEN

The value of normative models in research and clinical practice relies on their robustness and a systematic comparison of different modelling algorithms and parameters; however, this has not been done to date. We aimed to identify the optimal approach for normative modelling of brain morphometric data through systematic empirical benchmarking, by quantifying the accuracy of different algorithms and identifying parameters that optimised model performance. We developed this framework with regional morphometric data from 37 407 healthy individuals (53% female and 47% male; aged 3-90 years) from 87 datasets from Europe, Australia, the USA, South Africa, and east Asia following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The multivariate fractional polynomial regression (MFPR) emerged as the preferred algorithm, optimised with non-linear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3000 study participants. This model can inform about the biological and behavioural implications of deviations from typical age-related neuroanatomical changes and support future study designs. The model and scripts described here are freely available through CentileBrain.


Asunto(s)
Benchmarking , Longevidad , Humanos , Masculino , Femenino , Encéfalo/diagnóstico por imagen , Modelos Estadísticos , Algoritmos
3.
medRxiv ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38370846

RESUMEN

Background: Schizophrenia is associated with an increased risk of aggressive behaviour, which may partly be explained by illness-related changes in brain structure. However, previous studies have been limited by group-level analyses, small and selective samples of inpatients and long time lags between exposure and outcome. Methods: This cross-sectional study pooled data from 20 sites participating in the international ENIGMA-Schizophrenia Working Group. Sites acquired T1-weighted and diffusion-weighted magnetic resonance imaging scans in a total of 2095 patients with schizophrenia and 2861 healthy controls. Measures of grey matter volume and white matter microstructural integrity were extracted from the scans using harmonised protocols. For each measure, normative modelling was used to calculate how much patients deviated (in z-scores) from healthy controls at the individual level. Ordinal regression models were used to estimate the associations of these deviations with concurrent aggressive behaviour (as odds ratios [ORs] with 99% confidence intervals [CIs]). Mediation analyses were performed for positive symptoms (i.e., delusions, hallucinations and disorganised thinking), impulse control and illness insight. Aggression and potential mediators were assessed with the Positive and Negative Syndrome Scale, Scale for the Assessment of Positive Symptoms or Brief Psychiatric Rating Scale. Results: Aggressive behaviour was significantly associated with reductions in total cortical volume (OR [99% CI] = 0.88 [0.78, 0.98], p = .003) and global white matter integrity (OR [99% CI] = 0.72 [0.59, 0.88], p = 3.50 × 10-5) and additional reductions in dorsolateral prefrontal cortex volume (OR [99% CI] = 0.85 [0.74, 0.97], p =.002), inferior parietal lobule volume (OR [99% CI] = 0.76 [0.66, 0.87], p = 2.20 × 10-7) and internal capsule integrity (OR [99% CI] = 0.76 [0.63, 0.92], p = 2.90 × 10-4). Except for inferior parietal lobule volume, these associations were largely mediated by increased severity of positive symptoms and reduced impulse control. Conclusions: This study provides evidence that the co-occurrence of positive symptoms, poor impulse control and aggressive behaviour in schizophrenia has a neurobiological basis, which may inform the development of therapeutic interventions.

4.
bioRxiv ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38076938

RESUMEN

We present an empirically benchmarked framework for sex-specific normative modeling of brain morphometry that can inform about the biological and behavioral significance of deviations from typical age-related neuroanatomical changes and support future study designs. This framework was developed using regional morphometric data from 37,407 healthy individuals (53% female; aged 3-90 years) following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The Multivariate Factorial Polynomial Regression (MFPR) emerged as the preferred algorithm optimized using nonlinear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins, and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3,000 study participants. The model and scripts described here are freely available through CentileBrain (https://centilebrain.org/).

5.
Front Psychiatry ; 13: 955871, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276329

RESUMEN

The impact of adverse childhood experiences (ACEs) differs between individuals and depends on the type and timing of the ACE. The aim of this study was to assess the relation between various recently occurred ACEs and morphology in the developing brain of children between 8 and 11 years of age. We measured subcortical volumes, cortical thickness, cortical surface area and fractional anisotropy in regions of interest in brain scans acquired in 1,184 children from the YOUth cohort. ACEs were based on parent-reports of recent experiences and included: financial problems; parental mental health problems; physical health problems in the family; substance abuse in the family; trouble with police, justice or child protective services; change in household composition; change in housing; bereavement; divorce or conflict in the family; exposure to violence in the family and bullying victimization. We ran separate linear models for each ACE and each brain measure. Results were adjusted for the false discovery rate across regions of interest. ACEs were reported for 83% of children in the past year. Children were on average exposed to two ACEs. Substance abuse in the household was associated with larger cortical surface area in the left superior frontal gyrus, t(781) = 3.724, p FDR = 0.0077, right superior frontal gyrus, t(781) = 3.409, p FDR = 0.0110, left pars triangularis, t(781) = 3.614, p FDR = 0.0077, left rostral middle frontal gyrus, t(781) = 3.163, p FDR = 0.0195 and right caudal anterior cingulate gyrus, t(781) = 2.918, p FDR = 0.0348. Household exposure to violence (was associated with lower fractional anisotropy in the left and right cingulum bundle hippocampus region t(697) = -3.154, p FDR = 0.0101 and t(697) = -3.401, p FDR = 0.0085, respectively. Lower household incomes were more prevalent when parents reported exposure to violence and the mean parental education in years was lower when parents reported substance abuse in the family. No other significant associations with brain structures were found. Longer intervals between adversity and brain measurements and longitudinal measurements may reveal whether more evidence for the impact of ACEs on brain development will emerge later in life.

6.
Nat Neurosci ; 25(4): 421-432, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35383335

RESUMEN

Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging.


Asunto(s)
Estudio de Asociación del Genoma Completo , Longevidad , Envejecimiento/genética , Encéfalo , Humanos , Longevidad/genética , Imagen por Resonancia Magnética
7.
Genes (Basel) ; 13(4)2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35456501

RESUMEN

Schizophrenia and bipolar disorder are neurodevelopmental disorders with overlapping symptoms and a shared genetic background. Deviations in intracranial volume (ICV)­a marker for neurodevelopment­differ between schizophrenia and bipolar disorder. Here, we investigated whether genetic risk for schizophrenia and bipolar disorder is related to ICV in the general population by using the UK Biobank data (n = 20,196). Polygenic risk scores for schizophrenia (SZ-PRS) and bipolar disorder (BD-PRS) were computed for 12 genome wide association study P-value thresholds (PT) for each individual and correlations with ICV were investigated. Partial correlations were performed at each PT to investigate whether disease specific genetic risk variants for schizophrenia and bipolar disorder show different relationships with ICV. ICV showed a negative correlation with SZ-PRS at PT ≥ 0.005 (r < −0.02, p < 0.005). ICV was not associated with BD-PRS; however, a positive correlation between BD-PRS and ICV at PT = 0.2 and PT = 0.4 (r = +0.02, p < 0.005) appeared when the genetic overlap between schizophrenia and bipolar disorder was accounted for. Despite small effect sizes, a higher load of schizophrenia risk genes is associated with a smaller ICV in the general population, while risk genes specific for bipolar disorder are correlated with a larger ICV. These findings suggest that schizophrenia and bipolar disorder risk genes, when accounting for the genetic overlap between both disorders, have opposite effects on early brain development.


Asunto(s)
Trastorno Bipolar , Esquizofrenia , Trastorno Bipolar/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Herencia Multifactorial/genética , Factores de Riesgo , Esquizofrenia/genética
8.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35328598

RESUMEN

Externalizing behavior in its more extreme form is often considered a problem to the individual, their families, teachers, and society as a whole. Several brain structures have been linked to externalizing behavior and such associations may arise if the (co)development of externalizing behavior and brain structures share the same genetic and/or environmental factor(s). We assessed externalizing behavior with the Child Behavior Checklist and Youth Self Report, and the brain volumes and white matter integrity (fractional anisotropy [FA] and mean diffusivity [MD]) with magnetic resonance imaging in the BrainSCALE cohort, which consisted of twins and their older siblings from 112 families measured longitudinally at ages 10, 13, and 18 years for the twins. Genetic covariance modeling based on the classical twin design, extended to also include siblings of twins, showed that genes influence externalizing behavior and changes therein (h2 up to 88%). More pronounced externalizing behavior was associated with higher FA (observed correlation rph up to +0.20) and lower MD (rph up to -0.20), with sizeable genetic correlations (FA ra up to +0.42; MD ra up to -0.33). The cortical gray matter (CGM; rph up to -0.20) and cerebral white matter (CWM; rph up to +0.20) volume were phenotypically but not genetically associated with externalizing behavior. These results suggest a potential mediating role for global brain structures in the display of externalizing behavior during adolescence that are both partially explained by the influence of the same genetic factor.


Asunto(s)
Gemelos , Sustancia Blanca , Adolescente , Encéfalo/diagnóstico por imagen , Niño , Estructuras Genéticas , Humanos , Imagen por Resonancia Magnética , Gemelos/genética , Sustancia Blanca/diagnóstico por imagen
9.
Hum Brain Mapp ; 43(1): 414-430, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33027543

RESUMEN

First-degree relatives of patients diagnosed with schizophrenia (SZ-FDRs) show similar patterns of brain abnormalities and cognitive alterations to patients, albeit with smaller effect sizes. First-degree relatives of patients diagnosed with bipolar disorder (BD-FDRs) show divergent patterns; on average, intracranial volume is larger compared to controls, and findings on cognitive alterations in BD-FDRs are inconsistent. Here, we performed a meta-analysis of global and regional brain measures (cortical and subcortical), current IQ, and educational attainment in 5,795 individuals (1,103 SZ-FDRs, 867 BD-FDRs, 2,190 controls, 942 schizophrenia patients, 693 bipolar patients) from 36 schizophrenia and/or bipolar disorder family cohorts, with standardized methods. Compared to controls, SZ-FDRs showed a pattern of widespread thinner cortex, while BD-FDRs had widespread larger cortical surface area. IQ was lower in SZ-FDRs (d = -0.42, p = 3 × 10-5 ), with weak evidence of IQ reductions among BD-FDRs (d = -0.23, p = .045). Both relative groups had similar educational attainment compared to controls. When adjusting for IQ or educational attainment, the group-effects on brain measures changed, albeit modestly. Changes were in the expected direction, with less pronounced brain abnormalities in SZ-FDRs and more pronounced effects in BD-FDRs. To conclude, SZ-FDRs and BD-FDRs show a differential pattern of structural brain abnormalities. In contrast, both had lower IQ scores and similar school achievements compared to controls. Given that brain differences between SZ-FDRs and BD-FDRs remain after adjusting for IQ or educational attainment, we suggest that differential brain developmental processes underlying predisposition for schizophrenia or bipolar disorder are likely independent of general cognitive impairment.


Asunto(s)
Trastorno Bipolar/patología , Disfunción Cognitiva/patología , Escolaridad , Predisposición Genética a la Enfermedad , Inteligencia/fisiología , Neuroimagen , Esquizofrenia/patología , Trastorno Bipolar/complicaciones , Trastorno Bipolar/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Familia , Humanos , Imagen por Resonancia Magnética , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/etiología
10.
Hum Brain Mapp ; 43(1): 56-82, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32725849

RESUMEN

MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.


Asunto(s)
Trastorno Bipolar , Corteza Cerebral , Imagen por Resonancia Magnética , Neuroimagen , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Humanos , Metaanálisis como Asunto , Estudios Multicéntricos como Asunto
11.
Psychol Med ; 52(6): 1101-1114, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-32779562

RESUMEN

BACKGROUND: Many cognitive functions are under strong genetic control and twin studies have demonstrated genetic overlap between some aspects of cognition and schizophrenia. How the genetic relationship between specific cognitive functions and schizophrenia is influenced by IQ is currently unknown. METHODS: We applied selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) to examine the heritability of specific cognitive functions and associations with schizophrenia liability. Verbal and performance IQ were estimated using The Wechsler Adult Intelligence Scale-III and the Danish Adult Reading Test. In total, 214 twins including monozygotic (MZ = 32) and dizygotic (DZ = 22) pairs concordant or discordant for a schizophrenia spectrum disorder, and healthy control pairs (MZ = 29, DZ = 20) were recruited through the Danish national registers. Additionally, eight twins from affected pairs participated without their sibling. RESULTS: Significant heritability was observed for planning/spatial span (h2 = 25%), self-ordered spatial working memory (h2 = 64%), sustained attention (h2 = 56%), and movement time (h2 = 47%), whereas only unique environmental factors contributed to set-shifting, reflection impulsivity, and thinking time. Schizophrenia liability was associated with planning/spatial span (rph = -0.34), self-ordered spatial working memory (rph = -0.24), sustained attention (rph = -0.23), and set-shifting (rph = -0.21). The association with planning/spatial span was not driven by either performance or verbal IQ. The remaining associations were shared with performance, but not verbal IQ. CONCLUSIONS: This study provides further evidence that some cognitive functions are heritable and associated with schizophrenia, suggesting a partially shared genetic etiology. These functions may constitute endophenotypes for the disorder and provide a basis to explore genes common to cognition and schizophrenia.


Asunto(s)
Esquizofrenia , Adulto , Humanos , Esquizofrenia/genética , Gemelos Monocigóticos/psicología , Gemelos Dicigóticos/genética , Cognición , Pruebas Neuropsicológicas
12.
Hum Brain Mapp ; 43(1): 452-469, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33570244

RESUMEN

Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.


Asunto(s)
Amígdala del Cerebelo/anatomía & histología , Cuerpo Estriado/anatomía & histología , Hipocampo/anatomía & histología , Desarrollo Humano/fisiología , Neuroimagen , Tálamo/anatomía & histología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Amígdala del Cerebelo/diagnóstico por imagen , Niño , Preescolar , Cuerpo Estriado/diagnóstico por imagen , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Tálamo/diagnóstico por imagen , Adulto Joven
13.
Hum Brain Mapp ; 43(1): 470-499, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33044802

RESUMEN

For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.


Asunto(s)
Variación Biológica Poblacional/fisiología , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Desarrollo Humano/fisiología , Imagen por Resonancia Magnética , Neuroimagen , Caracteres Sexuales , Grosor de la Corteza Cerebral , Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Masculino
14.
Hum Brain Mapp ; 43(1): 431-451, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33595143

RESUMEN

Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Desarrollo Humano/fisiología , Neuroimagen , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
15.
Biol Psychiatry ; 91(6): 582-592, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34809987

RESUMEN

BACKGROUND: Bipolar disorder (BD) is associated with cortical and subcortical structural brain abnormalities. It is unclear whether such alterations progressively change over time, and how this is related to the number of mood episodes. To address this question, we analyzed a large and diverse international sample with longitudinal magnetic resonance imaging (MRI) and clinical data to examine structural brain changes over time in BD. METHODS: Longitudinal structural MRI and clinical data from the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) BD Working Group, including 307 patients with BD and 925 healthy control subjects, were collected from 14 sites worldwide. Male and female participants, aged 40 ± 17 years, underwent MRI at 2 time points. Cortical thickness, surface area, and subcortical volumes were estimated using FreeSurfer. Annualized change rates for each imaging phenotype were compared between patients with BD and healthy control subjects. Within patients, we related brain change rates to the number of mood episodes between time points and tested for effects of demographic and clinical variables. RESULTS: Compared with healthy control subjects, patients with BD showed faster enlargement of ventricular volumes and slower thinning of the fusiform and parahippocampal cortex (0.18

Asunto(s)
Trastorno Bipolar , Adulto , Trastorno Bipolar/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Adelgazamiento de la Corteza Cerebral , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Manía , Persona de Mediana Edad , Estudios Multicéntricos como Asunto , Neuroimagen , Adulto Joven
16.
Eur J Neurosci ; 54(6): 6012-6026, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34390509

RESUMEN

Alcohol consumption is commonly initiated during adolescence, but the effects on human brain development remain unknown. In this multisite study, we investigated the longitudinal associations of adolescent alcohol use and brain morphology. Three longitudinal cohorts in the Netherlands (BrainScale n = 200, BrainTime n = 239 and a subsample of the Generation R study n = 318) of typically developing participants aged between 8 and 29 years were included. Adolescent alcohol use was self-reported. Longitudinal neuroimaging data were collected for at least two time points. Processing pipelines and statistical analyses were harmonized across cohorts. Main outcomes were global and regional brain volumes, which were a priori selected. Linear mixed effect models were used to test main effects of alcohol use and interaction effects of alcohol use with age in each cohort separately. Alcohol use was associated with adolescent's brain morphology showing accelerated decrease in grey matter volumes, in particular in the frontal and cingulate cortex volumes, and decelerated increase in white matter volumes. No dose-response association was observed. The findings were most prominent and consistent in the older cohorts (BrainScale and BrainTime). In summary, this longitudinal study demonstrated differences in neurodevelopmental trajectories of grey and white matter volume in adolescents who consume alcohol compared with non-users. These findings highlight the importance to further understand underlying neurobiological mechanisms when adolescents initiate alcohol consumption. Therefore, further studies need to determine to what extent this reflects the causal nature of this association, as this longitudinal observational study does not allow for causal inference.


Asunto(s)
Encéfalo , Sustancia Blanca , Adolescente , Adulto , Consumo de Bebidas Alcohólicas , Encéfalo/diagnóstico por imagen , Niño , Sustancia Gris , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Adulto Joven
17.
Transl Psychiatry ; 11(1): 402, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290222

RESUMEN

Depression and anxiety are common and often comorbid mental health disorders that represent risk factors for aging-related conditions. Brain aging has shown to be more advanced in patients with major depressive disorder (MDD). Here, we extend prior work by investigating multivariate brain aging in patients with MDD, anxiety disorders, or both, and examine which factors contribute to older-appearing brains. Adults aged 18-57 years from the Netherlands Study of Depression and Anxiety underwent structural MRI. A pretrained brain-age prediction model based on >2000 samples from the ENIGMA consortium was applied to obtain brain-predicted age differences (brain PAD, predicted brain age minus chronological age) in 65 controls and 220 patients with current MDD and/or anxiety. Brain-PAD estimates were associated with clinical, somatic, lifestyle, and biological factors. After correcting for antidepressant use, brain PAD was significantly higher in MDD (+2.78 years, Cohen's d = 0.25, 95% CI -0.10-0.60) and anxiety patients (+2.91 years, Cohen's d = 0.27, 95% CI -0.08-0.61), compared with controls. There were no significant associations with lifestyle or biological stress systems. A multivariable model indicated unique contributions of higher severity of somatic depression symptoms (b = 4.21 years per unit increase on average sum score) and antidepressant use (-2.53 years) to brain PAD. Advanced brain aging in patients with MDD and anxiety was most strongly associated with somatic depressive symptomatology. We also present clinically relevant evidence for a potential neuroprotective antidepressant effect on the brain-PAD metric that requires follow-up in future research.


Asunto(s)
Trastorno Depresivo Mayor , Adulto , Envejecimiento , Trastornos de Ansiedad , Encéfalo/diagnóstico por imagen , Depresión , Humanos , Países Bajos/epidemiología
18.
Hum Brain Mapp ; 42(11): 3643-3655, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33973694

RESUMEN

Surface rendering of MRI brain scans may lead to identification of the participant through facial characteristics. In this study, we evaluate three methods that overwrite voxels containing privacy-sensitive information: Face Masking, FreeSurfer defacing, and FSL defacing. We included structural T1-weighted MRI scans of children, young adults and older adults. For the young adults, test-retest data were included with a 1-week interval. The effects of the de-identification methods were quantified using different statistics to capture random variation and systematic noise in measures obtained through the FreeSurfer processing pipeline. Face Masking and FSL defacing impacted brain voxels in some scans especially in younger participants. FreeSurfer defacing left brain tissue intact in all cases. FSL defacing and FreeSurfer defacing preserved identifiable characteristics around the eyes or mouth in some scans. For all de-identification methods regional brain measures of subcortical volume, cortical volume, cortical surface area, and cortical thickness were on average highly replicable when derived from original versus de-identified scans with average regional correlations >.90 for children, young adults, and older adults. Small systematic biases were found that incidentally resulted in significantly different brain measures after de-identification, depending on the studied subsample, de-identification method, and brain metric. In young adults, test-retest intraclass correlation coefficients (ICCs) were comparable for original scans and de-identified scans with average regional ICCs >.90 for (sub)cortical volume and cortical surface area and ICCs >.80 for cortical thickness. We conclude that apparent visual differences between de-identification methods minimally impact reliability of brain measures, although small systematic biases can occur.


Asunto(s)
Encéfalo/diagnóstico por imagen , Anonimización de la Información , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Neuroimagen , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Corteza Cerebral , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
19.
Schizophr Res ; 231: 189-197, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33882370

RESUMEN

Schizophrenia patients show signs of accelerated aging in cognitive and physiological domains. Both schizophrenia and accelerated aging, as measured by MRI brain images and epigenetic clocks, are correlated with increased mortality. However, the association between these aging measures have not yet been studied in schizophrenia patients. In schizophrenia patients and healthy subjects, accelerated aging was assessed in brain tissue using a longitudinal MRI (N = 715 scans; mean scan interval 3.4 year) and in blood using two epigenetic age clocks (N = 172). Differences ('gaps') between estimated ages and chronological ages were calculated, as well as the acceleration rate of brain aging. The correlations between these aging measures as well as with polygenic risk scores for schizophrenia (PRS; N = 394) were investigated. Brain aging and epigenetic aging were not significantly correlated. Polygenic risk for schizophrenia was significantly correlated with brain age gap, brain age acceleration rate, and negatively correlated with DNAmAge gap, but not with PhenoAge gap. However, after controlling for disease status and multiple comparisons correction, these effects were no longer significant. Our results imply that the (accelerated) aging observed in the brain and blood reflect distinct biological processes. Our findings will require replication in a larger cohort.


Asunto(s)
Esquizofrenia , Envejecimiento/genética , Encéfalo/diagnóstico por imagen , Metilación de ADN , Epigénesis Genética , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética
20.
Transl Psychiatry ; 11(1): 182, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33753722

RESUMEN

Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA-CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088 non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only) between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and somewhat larger in deletion carriers-the latter potentially mediated by ICV or cortical surface area. These results shed light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on specific brain structures and effect on cognitive function.


Asunto(s)
Variaciones en el Número de Copia de ADN , Esquizofrenia , Encéfalo/diagnóstico por imagen , Deleción Cromosómica , Cognición , Femenino , Humanos , Masculino , Esquizofrenia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...